If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2-80x=0
a = 1.5; b = -80; c = 0;
Δ = b2-4ac
Δ = -802-4·1.5·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80}{2*1.5}=\frac{0}{3} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80}{2*1.5}=\frac{160}{3} =53+1/3 $
| -6+p+9=8-4 | | -(-5x-15)=2x+3 | | (W-5)(w+6)=0 | | 7z+z+4=19 | | 128+8x+11x+4=360 | | 2k-6k-8=45 | | N(5)=1-x+4 | | x+26=14 | | 5x+3=-5x-3 | | x+26=5x-30 | | N(0)=1-x+4 | | N(-2)=1-x+4 | | 9x-9+X-9=180 | | j-53/6=5 | | 27=9(w) | | P(5)=-3+4x | | 1/5(-4/5)=x | | P(0)=-3+4x | | P(0))=-3+4x | | P(-2)=-3+4x | | R(5)=-x-7 | | R(0)=-x-7 | | 5(x-3)-2x=46-4(x+1) | | j8=97 | | H(0)=-2x+9 | | 15-(7x+20)=5.0(6x-14) | | -2(x+2)=4x=-(-x+1) | | L(d)=57+d | | 5s+s+4=16 | | 3x+9x-10=14 | | 9x+9=18x-4 | | n^2+2n+5=85 |